Metformin Sensitizes Non-small Cell Lung Cancer Cells to an Epigallocatechin-3-Gallate (EGCG) Treatment by Suppressing the Nrf2/HO-1 Signaling Pathway

نویسندگان

  • Chenxiao Yu
  • Yang Jiao
  • Jiao Xue
  • Qi Zhang
  • Hongying Yang
  • Ligang Xing
  • Guangxia Chen
  • Jinchang Wu
  • Shuyu Zhang
  • Wei Zhu
  • Jianping Cao
چکیده

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. (-)-Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, is widely studied as a cancer chemopreventive agent with potential anti-cancer effects. The NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway is considered to mediate cellular resistance to EGCG. Metformin, a classical antidiabetic drug, has been shown to prevent cancer progression. Researchers have not reported whether metformin potentiates the anti-cancer efficacy of EGCG. In this study, metformin inhibited HO-1 expression and augmented the anti-tumor effect of EGCG. Metformin also enhanced ROS (reactive oxygen species) generation induced by EGCG (100 μM), subsequently resulting in apoptosis. Based on the results of the in vivo study, size of xenografts treated with the combination of metformin and EGCG was smaller than other groups. Mechanistically, metformin modulated the EGCG-activated Nrf2/HO-1 pathway through Sirtuin 1 (SIRT1)-dependent deacetylation of Nrf2. Moreover, metformin upregulated SIRT1 expression partially through the NF-kB pathway. Comparatively, the combination of EGCG and metformin showed little impact on normal lung epithelial BEAS-2B cells. Based on our findings, metformin sensitized NSCLC cells to the EGCG treatment by suppressing the Nrf2/HO-1 signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells

This study evaluated effect of oxalate on epithelial mesenchymal transition (EMT) and potential anti-fibrotic property of epigallocatechin-3-gallate (EGCG). MDCK renal tubular cells were incubated with 0.5 mM sodium oxalate for 24-h with/without 1-h pretreatment with 25 μM EGCG. Microscopic examination, immunoblotting and immunofluorescence staining revealed that oxalate-treated cells gained me...

متن کامل

Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways.

Endothelial dysfunction and oxidative stress likely play roles in PM2.5-induced harmful effects. Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant that exerts protective effects on cardiovascular diseases (CVDs) in part by scavenging free radicals. The exposure to ambient fine particulate matter (PM2.5) is responsible for certain CVDs. T...

متن کامل

The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity

Arsenic exposure produces hepatotoxicity. The common mechanism determining its toxicity is the generation of oxidative stress. Oxidative stress induced by arsenic leads to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. (-)-Epigallocatechin-3-gallate (EGCG) possesses a potent antioxidant capacity and exhibits extensive pharmacological activities. This study aims to...

متن کامل

The Green Tea Component (-)-Epigallocatechin-3-Gallate Sensitizes Primary Endothelial Cells to Arsenite-Induced Apoptosis by Decreasing c-Jun N-Terminal Kinase-Mediated Catalase Activity

The green tea component (-)-epigallocatechin-3-gallate (EGCG) has been shown to sensitize many different types of cancer cells to anticancer drug-induced apoptosis, although it protects against non-cancerous primary cells against toxicity from certain conditions such as exposure to arsenic (As) or ultraviolet irradiation. Here, we found that EGCG promotes As-induced toxicity of primary-cultured...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017